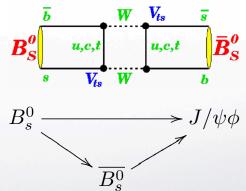
Measurement of CP violating parameters in the decay $B_s^0 \rightarrow J/\psi + \phi$ at DØ

Jorge Martínez-Ortega on behalf of the DZero collaboration

Cinvestav, IPN, México

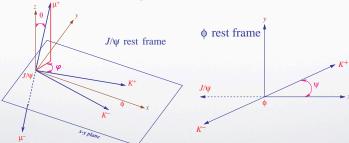
SUSY 2011, September 1, Fermilab

Overview

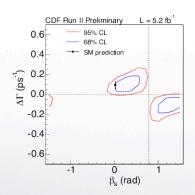

- ▶ Motivation
- ► Tevatron and DØ
- ► Event Selection
- Probability Density
- Detector Acceptances, Lifetime Resolution, Flavor Tagging
- ► Fit Results, S-Wave
- Systematic uncertainties
- ► Final Results
- ▶ Conclusions

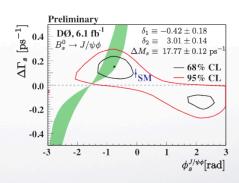
Motivation

- ► Two mass eigenstates of the B_s^0 system with sizeable $\Delta M_s = M_H M_L$ and $\Delta \Gamma_s = \Gamma_L \Gamma_H$
- Mixing between the flavor eigenstates, interference of decays with and without mixing can cause CP violation
- ► The CP-violating phase is predicted to be $\Phi_s^{J/\Psi\Phi} = -2\beta_s = -2\arg[-V_{tb}V_{ts}^*/V_{cb}V_{cs}^*] = -0.038 \pm 0.002$.
- New phenomena may alter the phase $\Phi_{\rm s}^{J/\Psi\Phi}\equiv -2\beta_{\rm s}+\phi_{\rm s}^{\Delta}$
- We measure $\Delta\Gamma_{\rm s}$ and $\Phi_{\rm s}^{{\rm J/\Psi\Phi}}$

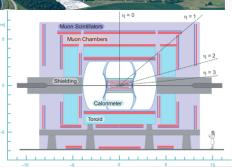


CP eigenstates


- ▶ $B_s \rightarrow J/\Psi\Phi$ admixture of CP-even/odd states, each of these state has different angular distribution, $P_{\mathbf{B}}(\theta,\varphi,\psi,t) = \frac{9}{16\pi} |\mathbf{A}(\psi,t) \times \hat{n}|$
- $\blacktriangleright \ \mathbf{A}(\psi,t) = (\mathcal{A}_0(t)\cos\psi, \tfrac{-1}{\sqrt{2}}\mathcal{A}_{\parallel}(t)\sin\psi, \tfrac{i}{\sqrt{2}}\mathcal{A}_{\perp}(t)\sin\psi)$
- ► For the CP eigenstates:
 - ► CP-odd (I=I): A_⊥
 - ► CP-even (I=0,2): A₀, A_{||}



Previous Results CDF and DØ

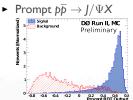


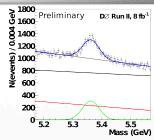
Tevatron and DØ

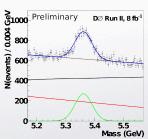
Tevatron Collider at Fermilab

- ightharpoonup proton antiproton collisions at $\sqrt{s}=1.96 {\rm TeV}$
- ► 11.66 fb⁻¹ of integrated luminosity delivered
- ▶ DØ has recorded 10.44 fb⁻¹

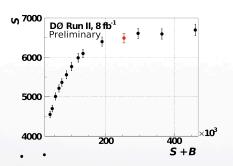
Event Selection

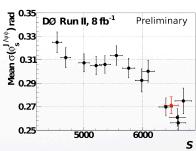

- We require two reconstructed muons of opposite charge.
- ▶ Form J/Ψ candidates
- ► Form Φ candiates from opposite charged tracks assuming the tracks are kaons.
- ► Form B_s candidates from J/Ψ and Φ candidates.
- Make cuts in the kinematic and the mass windows:
 - ► $P_t(K^{\pm}) > 0.4 \text{GeV}$
 - $2.84 < M(\mu^+\mu^-) < 3.35 \text{GeV}$
 - ► $0.98 < M(K^+K^-) < 1.04 \text{GeV}$
 - $5.0 < M(\mu^+\mu^-K^+K^-) < 5.8$ GeV


Background suppression


► BDT used to suppress background.

 Simple-Cut as in 2008 PRL, for cross-check and systematic uncertainties.





Optimizing selection

- ► Tight cuts implies better signal significance but less signal events
- Optimized selection cuts using toy montecarlo studies

Probability Distribution

$$\epsilon(\vec{\omega}) \times \left(\mathcal{B}_{\mathrm{S}}(\lambda; \mathbf{t}, \vec{\omega}) \frac{1 - \mathrm{D}}{2} + \overline{\mathcal{B}}_{\mathrm{S}}(\lambda; \mathbf{t}, \vec{\omega}) \frac{1 + \mathrm{D}}{2}\right) \otimes \mathit{R}(\mathbf{t})$$

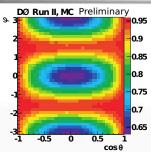
where:

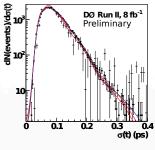
- $ightharpoonup \vec{\omega} = (\psi, \theta, \varphi) \text{angles}$
- ► D— initial flavor tagging dilution
- ▶ $\epsilon(\vec{\omega})$ acceptance, R(t) –resolution.

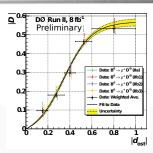
$$\mathcal{B}_{s} = \left| \left[\sqrt{1 - F_{s}} g(\mu) \mathbf{A} + e^{-i\delta_{s}} \sqrt{F_{s}} h(\mu) \mathbf{B} \right] \times \hat{\mathbf{n}} \right|^{2}$$

- ▶ $\mathbf{A}(\lambda; t, \vec{\omega})$ − P-Wave, $\mathbf{B}(\lambda; t, \vec{\omega})$ − S-Wave.

Real Measurables


► Two constraints: $\Delta m_{\rm s} \equiv 17.77 \pm 0.12 ({\rm ps}^{-1})$, $\cos(\delta_{\perp}) < 0$


Parameter	Definition	
$ A_0 ^2$	${\mathcal P}$ -wave amplitude squared	
$ A_{ } ^2$	${\mathcal P}$ -wave amplitude squared	
$\overline{ au}_{ extsf{s}}$ (ps)	$B_{\rm s}^0$ mean lifetime	
$\Delta\Gamma_{ m s}$ (ps $^{-1}$)	Heavy-light decay width difference	
F_{S}	K^+K^- S-wave fraction	
$\phi_{s}^{J/\psi\phi}$	CP-violating phase	
δ_{\parallel}	$arg(A_{\parallel}/A_0)$	
δ_{\perp}	$arg(A_{\perp}/A_0)$	
δ_{s}	$arg(A_s/A_0)$	



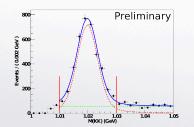
Acceptance, Resolution and Flavor Tagging

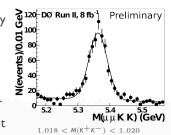
- Data selection criteria were applied to flat MC
- ▶ 2D $cos(\theta), \phi$ acceptance

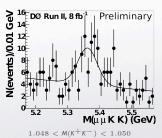
- Event-by-Event resolution width
- Distribution of proper decay time resolution
- Opposite Flavor tagging using:
 - Muon
 - Electron
 - ► Jet Charge

Maximum Likelihood Fit

Fit Results


Parameter	BDT Sample	Simple Cut Sample
$\overline{ au}_{ extsf{s}}$	$1.426^{+0.035}_{-0.032} \text{ ps}$	$1.444^{+0.041}_{-0.033} \text{ ps}$
$\Delta\Gamma_{s}$	$0.129^{+0.076}_{-0.053}~\mathrm{ps}^{-1}$	$0.179^{+0.059}_{-0.060}~\mathrm{ps}^{-1}$
$\phi_{ extsf{s}}^{ extsf{J/}\Psi\Phi}$	$-0.49^{+0.48}_{-0.40}$	$-0.56^{+0.36}_{-0.32}$
$ A_0 ^2$	$0.552^{+0.016}_{-0.017}$	0.565 ± 0.017
$ A_{ } ^2$	$0.219^{+0.020}_{-0.021}$	$0.249^{+0.021}_{-0.022}$
$\delta_{ }$	-3.15 ± 0.27	-3.15 ± 0.19
$\cos(\delta_{\perp}-\delta_{\mathrm{s}})$	-0.06 ± 0.24	$-0.20^{+0.26}_{-0.027}$
F _S (eff)	0.146 ± 0.035	0.176 ± 0.036



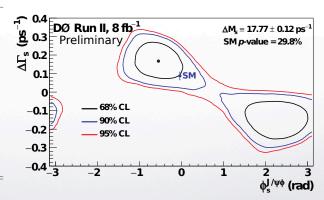


Independent determination of F_s

- ▶ We independently measure the S-wave fraction by obtaining B_s candidates in the M(KK) distribution from 0.98-1.05 GeV in step of 2 MeV
- ► The number of fitted B_s signal as a function of M(KK) is fitted with BW with different assumptions assigned as total measurement error
- ▶ We measure $F_s = 0.14 \pm 0.01$, consistent with fit estimation

Systematic Uncertainties

- Acceptance systematic from differences between BDT and Simple-cut samples
- ► Random Variation in resolution parameters
 - Random variations in the resolution parameter values
- ▶ Different widths of BW function in M(KK) resolution
 - \blacktriangleright Different resolution for the Φ mass, important since s-wave is around 15%
- Variation OST calibration curve


Maximum likelihood fit to each alternative fit provide systematic error, which are very small compare to statistical error To combine all the systematical effect of alternative universe, we generate Markov chains of very large states using Markov Chain Monte Carlo (MCMC) method and add them together

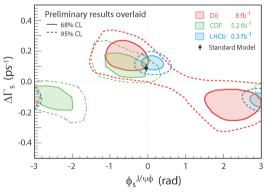
$B_{s}^{0} \rightarrow J/\Psi \Phi$ Result

Р	Х	
$\overline{ au}_{ extsf{s}}$	$1.443^{+0.038}_{-0.035}$ ps	
$\Delta\Gamma_{ extsf{s}}$	$0.163^{+0.065}_{-0.064}~\mathrm{ps}^{-1}$	
$\phi_{ extsf{s}}^{ extsf{J}/\Psi\Phi}$	$-0.55^{+0.38}_{-0.36}$	
$ A_0 ^2$	$0.558^{+0.017}_{-0.019}$	
$ A_{\parallel} ^2$	$0.231^{+0.024}_{-0.030}$	
$\delta_\parallel \ (\delta_\perp ext{-} \delta_ ext{s})$	-3.15 ± 0.22 $-0.11^{+0.027}_{-0.025}$	
$F_{S}(eff)$	0.173 ± 0.036	

Summary

- ▶ Measurement of B_s^0 mixing parameters, $(\Delta\Gamma_s, \phi_s^{J/\Psi\Phi})$, polarization amplitudes and phases in the $B_s^0 \to J/\Psi\Phi$ decay using $8fb^{-1}$ data sample.
 - ► Inclusion of K⁺K⁻ S-wave
- ► The results are consistent with the SM prediction
- ► Combination with other DØ measurements of CP-Violation parameters will be performed soon

Stay tuned! Thanks


Backup Slides

LHCb talk (this morning)

$B_s \rightarrow J/\psi \phi$

This is NOT an official accurate overlay!! - only an "artist's view" Bolek Pietrzyk

23

Markov Chain tecnique

- Since ϕ_s is very correlated with $\Delta\Gamma_s$ we want to know how the likelihood depends on these variables.
- Start from some point μ . I use the minimum obtained from the fit.
- Generate a multivariate gaussian ($e^{-\frac{1}{2}(x-\mu)\cdot \sum^{1}\cdot (x-\mu)}$.) point x'
- ightharpoonup Where Σ is the covariance matrix.
- ▶ Calculate $\alpha = L(x')/L(\mu)$
- Generate a random number r = U(0, 1)
- ▶ If $r < \alpha$ accept the new point $\mu = x$
- ► And continue until reach the amount of points desired.
- ► We generate IM events for each Markov Chain

